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a  b  s  t  r  a  c  t

Indole  alkaloids  ellipticine  (1),  cryptolepine  triflate  (2a),  rationally  designed  11-(4-
piperidinamino)cryptolepine  hydrogen  dichloride  (2b)  and  olivacine  (3)  (an  isomer  of  1)  were  evaluated
in vitro  against  Plasmodium  falciparum  and in  vivo  in  Plasmodium  berghei-infected  mice. 1–3  inhibited
P.  falciparum  (IC50 ≤ 1.4  �M, order  of  activity:  2b  > 1  >  2a >  3).  In vitro toxicity  to  murine  macrophages
was  evaluated  and  revealed  selectivity  indices  (SI)  of  10–12 for 2a  and  SI  >  2.8  × 102 for  1, 2b and  3. 1
administered  orally  at 50  mg/kg/day  was  highly  active  against  P. berghei  (in  vivo inhibition  compared
to  untreated  control  (IVI)  =  100%,  mean  survival  time  (MST)  > 40 days,  comparable  activity  to chloro-
quine  control).  1 administered  orally  and  subcutaneously  was  active  at 10  mg/kg/day  (IVI  = 70–77%;
MST  = 27–29  days).  3  exhibited  high  oral  activity  at ≥50  mg/kg/day  (IVI  =  90–97%,  MST  =  23–27  days).
Cryptolepine  (2a)  administered  orally  and  subcutaneously  exhibited  moderate  activity  at  50  mg/kg/day
(IVI =  43–63%,  MST  =  24–25  days).  At  50 mg/kg/day,  2b  administered  subcutaneously  was lethal  to
infected  mice  (MST  =  3 days)  and  moderately  active  when  administered  orally  (IVI = 45–55%,  MST = 25
days).  1  and  3 are  promising  compounds  for development  of  antimalarials.

© 2012 Elsevier GmbH. All rights reserved.

Introduction

Despite great effort and resources for the eradication of malaria
this disease still remains a grave public health problem involv-
ing hundreds of thousands of deaths annually (WHO  2010). While
research on vaccines is at an advanced stage, drug therapy is still
the principle tool for the control and eradication of the disease. The
emergence of strains of Plasmodium falciparum and P. vivax which
are resistant to first and second line antimalarials (multidrug resis-
tant or MDR) have motivated the search for new drugs representing
new and distinct chemical classes and mechanisms of action than
those of the antimalarial drugs currently in use. Chemical com-
pounds of novel structure and of natural origin represent a major

∗ Corresponding author. Tel.: +55 92 3643 3177; fax: +55 92 3643 3079.
E-mail addresses: ampohlit@inpa.gov.br, ampohlit@gmail.com (A.M. Pohlit).

source for the discovery and development of new drugs for diseases,
especially malaria (Kaur et al. 2009; Schmidt et al. 2012a,b).

Historically, plants used in traditional medicine as antimalar-
ials and febrifuges have provided substances which have proved
to be useful as antimalarials or have served chemists as struc-
tural models for the development of semi-synthetic drugs or purely
synthetic analogs. This is true of the most important antimalar-
ial natural products revealed to date: quinine (isolated from the
bark of Cinchona spp.) and artemisinin (isolated from Artemisia
annua leaves). The therapeutic efficacy and complex molecular
structure of quinine lead to the development of purely synthetic
analogs chloroquine, primaquine, mefloquine, among others in the
last century. More recently, semi-synthetic derivatives (e.g. sodium
artesunate, artemether, arteether and dihydroartemisinin) pre-
pared in one or more steps from isolated artemisinin have become
key pharmaceutical components in formulations used in what is
commonly called artemisinin combination therapy (ACT) for the
treatment of resistant and MDR  Plasmodium falciparum infections

0944-7113/$ – see front matter ©  2012 Elsevier GmbH. All rights reserved.
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Fig. 1. Structures of antimalarial compounds ellipticine (1), cryptolepine triflate (2a
triflate), 11-(4-piperidinamino)cryptolepine hydrogen dichloride (2b) and olivacine
(3).

(Plowe 2009; Willcox 2011). The extracts of a large number of plant
species including many that are used in traditional medicine have
been evaluated for in vitro antiplasmodial activities and some have
also been tested in in vivo models, usually in mice infected with
Plasmodium berghei,  P. yoelii or P. chabaudi. In some cases, the con-
stituent(s) responsible for their activities have been isolated but
relatively few have been studied further to assess their potential
as lead compounds for the development of new antimalarial drugs
(Wright 2005).

In recent years, the monoterpene indole alkaloid ellipticine (1,
Fig. 1) has been the subject of a number of pharmacological studies
and its derivatives have been studied in clinical trials against differ-
ent forms of cancer. Ellipticine has been isolated from the alkaline
ethanol extract of the bark of the Amazonian tree Aspidosperma
vargasii (Apocynaceae) (Andrade-Neto et al. 2007; Henrique et al.
2010) which is used in traditional medicine as an antimalarial
(Oliveira et al. 2003). In vitro antiplasmodial activity of 1 was  first
reported by Andrade-Neto et al. (2007).  Recently, the antimalarial
activity of 1 was independently confirmed and the comparable or
superior activity of four derivatives of 1 against P. falciparum in vitro
was described (Passemar et al. 2011; Pohlit et al. 2012).

The roots of the West African climbing shrub Cryptolepis san-
guinolenta (Lindl.) Schltr. (Apocynaceae) are a traditionally used
herbal for malaria treatment. Dry aqueous root extracts of C. san-
guinolenta have proven efficacy according to clinical trials (Willcox
2011). Cryptolepine (2a, Fig. 1) is the major alkaloid constituent
in the roots of this plant and 2a sulfate exhibits in vitro activity
(IC50 = 0.44 �M)  against multidrug-resistant K1 strain of P. falcipa-
rum (Wright et al. 2001). However, 2a sulfate failed to cure malaria
in mice when given orally and is toxic at a dose of 20 mg/kg to
P. berghei-infected mice when administered intraperitoneally (i.p.)
(Cimanga et al. 1997; Wright et al. 2001). Also, 2a has in vivo chronic
effects causing necrosis of rodent liver cells at a dose of 30 mg/kg
and also damages the DNA of lymphocytes in vitro. These and other
experimental results do not support the use of the indole alkaloid
cryptolepine (2a) as an antimalarial (Gopalan et al. 2011; Willcox
2011).

Derivatives of cryptolepine (2a) have been introduced having
greater antiplasmodial activity and better toxicity profiles. One of
the most promising of these derivatives is 2,7-dibromocryptolepine
which has potent in vitro activity (IC50 = 50 nM)  against K1 strain
of P. falciparum and exhibits significant suppression (89–91%) of
P. berghei growth in infected mice at doses of 20–25 mg/kg/day
over 4 days. While 2,7-dibromocryptolepine does not apparently
intercalate DNA bases as does 2a,  both these compounds dam-
age lymphocyte DNA based on results of the comet assay (Wright
et al. 2001; Gopalan et al. 2011). Recently, cryptolepine triflate

(2a triflate) and ten synthetic analogs of 2a containing aminoalkyl
side chains at C-11 were synthesized and screened for in vitro
antiplasmodial activity and cytotoxicity. One of the most promis-
ing of these compounds was  11-(4-piperidinamino)cryptolepine
hydrogen dichloride (2b) which exhibited potent inhibitory activ-
ity (IC50 = 44 nM)  against P. falciparum W2  strain and was the least
toxic of all the compounds tested, including 2a triflate and had
the largest cytotoxicity to antiplasmodial inhibition ratio (46.4:1)
(Lavrado et al. 2008, 2011).

Olivacine (3) is a rare alkaloid which is isolated from Aspi-
dosperma olivaceum.  The antitumor activity of 3 has been the
subject of studies for decades. Compound 3 and analogs have also
been synthesized (Besselièvre & Husson 1981; Chevallier-Multon
et al. 1990; Guillonneau et al. 2005).

Mechanistic studies demonstrate that cryptolepine (and it
analogs) and ellipticine (1) may  have important inhibitory effects
on the formation of hemozoin in P. falciparum.  Hemozoin for-
mation is a fundamental process related to the survival of this
parasite within the red blood cell. Heme is toxic to Plasmodium
spp. and is a by-product of digestion of hemoglobin by proteolytic
enzymes in the parasite’s digestive vacuole. Crystallization of heme
to hemozoin is a detoxifying process that occurs naturally within
the Plasmodium digestive vacuole and is necessary for the prolif-
eration of these parasites within the red blood cell. Inhibition of
hemozoin formation is associated with death of parasites within
the red blood cell due to osmotic imbalances and other effects.
Early mechanistic studies involving chemical assays showed that
ellipticine (1) can inhibit heme crystal growth (that is, hemozoin
formation) in the lab (Chong and Sullivan 2003). In other work, it
was presumed that cryptolepine (2a) interacts directly with heme
molecules in the process of inhibiting hemozoin formation (Kumar
et al. 2007; Lavrado et al. 2011).

Previous studies point to the fact that large or small structural
differences among analogous indole alkaloids, such as cryptolepine
analogs and �-carbolines (harmane analogs), can lead to large
differences in in vitro and in vivo antimalarial activity and cyto-
toxicity of these compounds. Thus, small structural differences
probably modulate and ultimately define the primary mechanisms
of action of these compounds (DNA intercalation, inhibition of
heme polymerization, inhibition of protein synthesis, among other
mechanisms yet to be revealed) (Arzel et al. 2001; Ancolio et al.
2002; Van Baelen et al. 2009).

In the present study, the antiplasmodial activity of structurally
related indole alkaloids ellipticine (1), cryptolepine derivative 2b
and olivacine (3) is investigated for the first time in P. berghei-
infected mice and the data are compared to those for cryptolepine
triflate (2a triflate). The in vitro antiplasmodial activity against
chloroquine-resistant and chloroquine sensitive strains of P. falcip-
arum and cytotoxicity of these compounds was evaluated in vitro
against murine macrophages as a means to comparatively eval-
uate selectivity of the antimalarial effect. The overall aim of this
work was  to provide comparative in vitro and especially in vivo anti-
malarial data for all four compounds which might lead to insights
into the relative importance of cryptolepine and ellipticine ring
systems/skeletons for the further development of antimalarials.

Materials and methods

Chemicals

Ellipticine (1) used in this work was obtained from two
sources. Synthetic 1 was purchased from Sigma–Aldrich (Stein-
heim, Germany). Also, 1 was  isolated from the bark of Aspidosperma
vargasii from INPA’s Ducke Reserve in Amazonas State, Brazil
through an alkaline extraction sequence followed by column
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chromatography as described previously (Andrade-Neto et al.
2007; Henrique et al. 2010). Cryptolepine triflate (2a triflate) and
cryptolepine analog 2b were obtained by synthesis as described
previously (Lavrado et al. 2008). Olivacine (3) was isolated
from Aspidosperma olivaceum from Minas Gerais State, Brazil, by
acid–base extraction. The purity of these compounds was checked
by TLC, UPLC–MS and NMR  and was >98%.

Culture and test for in vitro inhibition of P. falciparum parasites

Strains of P. falciparum used in this study were the anti-
malarial drug-susceptible 3D7 clone of the NF54 isolate and the
chloroquine-resistant, pyrimethamine-resistant and cycloguanil-
resistant K1 strain. Parasites were cultured according to the method
of Trager and Jensen (1976) as modified by Andrade-Neto et al.
(2007). The parasite culture was carried out at 37 ◦C with a hema-
tocrit of 3–5% and in an atmosphere of 5% CO2. The parasites
were maintained in vitro in A+ human red blood cells. The cul-
ture medium was RPMI 1640 (Sigma–Aldrich) supplemented with
10% human serum and containing 25 mM HEPES and 2 mM l-
glutamine. The micro-test was performed using the method of
Rieckmann et al. (1978) with modifications which were described
in Andrade-Neto et al. (2007).  Stock solutions of indole alkaloids
ellipticine (1), cryptolepine triflate (2a triflate), olivacine (3) and
11-substituted cryptolepine hydrogen dichloride analog 2c were
prepared in DMSO at a concentration of 5.0 mg/ml. Seven dilu-
tions were performed in culture medium (RPMI 1640) of each
stock sample solution resulting in final test concentrations (well
concentrations) of 50–3.2 × 10−3 �g/ml. Each diluted sample was
tested in duplicate in 96-well test plates containing a suspension
of parasitized red blood cells at a hematocrit of 3% and initial para-
sitemia of 1% of synchronized young trophozoites (ring forms). The
final volume of each well was 200 �l. Reference antimalarial com-
pounds chloroquine and quinine were used as positive controls at
concentrations recommended by WHO  (2001).  The test plate was
incubated for 48 h at 37 ◦C under the same low oxygen gas mixture
used for parasite culture. After the incubation period, thin smears
were prepared from the contents of each well and evaluated using
a microscope. The half maximal inhibitory (IC50) responses com-
pared with the drug-free controls were estimated by interpolation
using Microcal Origin® software.

Test for in vivo suppression of Plasmodium berghei

In vivo antimalarial activity was evaluated using P. berghei NK65
strain (drug-sensitive). This strain was maintained by successive
passages of blood forms from mouse to mouse. The test proto-
col is based on the 4-day suppressive test as described by Peters
(1965). Female Webster Swiss mice weighing 26 ± 2 g were used in
this study. Animals were infected intraperitoneally with 0.2 ml  of
infected blood suspension containing 1 × 105 parasitized erythro-
cytes and randomly divided into groups of three individuals. Test
groups were treated orally and subcutaneously at doses ranging
from 100 to 1 mg/kg/day. Positive control groups received a dose
of 10 mg  chloroquine/kg/day orally or subcutaneously and neg-
ative control groups received 0.2 ml  of 2% DMSO or saline. The
animals were treated for 4 days starting 24 h after inoculation with
P. berghei. On days 5 and 7 after inoculation with parasites, blood
smears were prepared from all mice, fixed with methanol, stained
with Giemsa dye, then microscopically examined (1000× magni-
fication). Parasitemia was determined in coded blood smears by
randomly counting 2000–4000 erythrocytes in the case of low par-
asitemias (≤10%); or up to 1000 erythrocytes in the case of higher
parasitemias. Overall mortality was monitored daily in all groups
during a period of 4 weeks following inoculation. The difference
between the average parasitemia of control groups (100%) and test

groups was  calculated as a percentage of parasite growth suppres-
sion (PGS) according to the equation: PGS = 100 × (A − B)/A, where
A is the average parasitemia of the negative control group and B
corresponds to the parasitemia of the test group.

Cytotoxicity test

For this test, macrophages from Swiss mice were used which
were described in Mota et al. (2012),  with modifications. The
macrophages were obtained at the time of use by collection with
cold, sterile phosphate saline solution (PSB) from the exudates
of the peritoneal cavity of mice. After centrifuging the peritoneal
exudate solutions, the supernatant was discarded and pellet was
re-suspended in 5 ml  of RPMI medium without FBS for counting
the macrophages in a Neubauer chamber. 1 × 105 cells were added
to each well. The plate was incubated in a CO2 incubator at 37 ◦C
for 24 h. The cytotoxicity of the samples was  determined using the
methylthiazoletetrazolium (MTT) colorimetric assay (Mosmann
1983). For the assays, the cells were trypsinized, washed, sus-
pended in DMEM,  and distributed into 72 wells per plate (5 × 103

cells per well) then incubated for 18 h at 37 ◦C. The samples were
separately diluted in DMSO and tested in triplicate at the following
concentrations: 1.5, 3.1, 6.3, 12.5, 25, 50, and 100 �g/ml. In paral-
lel, we  evaluated a control group consisting of RPMI 1640 without
FBS, a control group consisting of 1% DMSO (vehicle) and a positive
control (chloroquine, BS Pharma, Belo Horizonte, MG,  Brazil) at the
same concentrations used for substances 1–3.  After 24 and 48 h of
incubation at 37 ◦C, 100 �l of MTT  (5 mg/ml  in RPMI 1640 without
FBS and without phenol red) was added to each well. After 3 h in a
CO2 incubator at 37 ◦C, the supernatant was removed and added
to 100 �l DMSO in each well. The absorbance of each well was
obtained from a spectrophotometric reading at 562 nm.  The mini-
mum  lethal doses that inhibited 50% of cell growth were obtained
from the drug concentration response curves. Results are expressed
in mean ± standard deviation.

Selectivity index

The relative cytotoxicity to antiplasmodial activity for a given
compound was evaluated as a selectivity index (SI), where
SI = IC50(murine macrophages)/IC50(P. falciparum).

Animals and ethical approval

Adult Webster Swiss albino mice (26 ± 2 g weight) were used
for the antimalarial and toxicity tests and received water and food
ad libitum. In vivo tests were performed using Guidelines for Ethical
Conduct in The Care and Use of Animals of Federal University of Rio
Grande do Norte (CEUA 043/2010).

Results

Indole alkaloids ellipticine (1), cryptolepine triflate (2a
triflate) and olivacine (3) and synthetic analog 11-(4-
piperidinamino)cryptolepine hydrogen dichloride (2b) were
assayed for in vitro activity against Plasmodium falciparum K1 e 3D7
strains and cytotoxic activity against murine macrophages. From
the IC50 values for each substance against murine macrophages
and malaria parasite strains it was  possible to determine selectivity
indices. The in vitro results are presented in Table 1. Olivacine
(3) is a previously known indole alkaloid for which antimalarial
activity has not been previously described. It was the least active
compound in vitro, however, it did significantly inhibit P. falciparum
growth (IC50 = 1.2 �M against K1 strain). The potent in vitro activity
of ellipticine (1) reported previously was  confirmed herein (IC50
values of 0.81 and 0.35 �M against P. falciparum K1 and 3D7 strains,
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Table  1
Median inhibition concentrations (IC50) and selectivity indices (SI) for indole alkaloids 1–3 in vitro against Plasmodium falciparum K1 and 3D7 strains and murine macrophages.

Compound IC50 (�M) SIa

Name No. P. falciparum Murine macrophages

K1 3D7

Ellipticine 1 0.81 0.35 >4.1 × 102 >5.0 × 102/>1.2 × 103

Cryptolepine triflate 2a 0.80 0.91 9.1 11/10
Cryptolepine analog 2b 0.10 0.087 34 3.3 × 102/3.9 × 102

Olivacine 3 1.4 1.2 >4.1 × 102 >2.9 × 102/>3.4 × 102

Chloroquine diphosphate 0.13 0.058 1.4 × 102 1.1 × 103/2.4 × 103

Quinine sulfate 0.16 0.11 n.t. –
Artemisinin 0.0021 0.0011 n.t. –

Data values are expressed as two (2) significant figures as per the precision of the methods used. n.t.: not tested; –: not calculable.
a SI = IC50(“macrophages′′)/IC50(P. falciparum) and is reported for K1/3D7 strains.

respectively). Ellipticine (1) and its structural isomer olivacine (3)
were the least cytotoxic compounds in this study (IC50 > 0.41 mM,
highest concentration tested). This low cytotoxicity contributed
greatly to the high selectivity indices obtained for 1 and 3 against
P. falciparum 3D7 (>1.2 × 103 and >3.4 × 102, respectively). The
compound with the most in vitro activity against P. falciparum was
rationally designed 11-(4-piperidinamino)cryptolepine hydrogen
dichloride (2b) (IC50 = 0.10 and 0.087 �M,  against P. falciparum
K1 and 3D7 strains, respectively) which had been selected from
among a number of synthetic cryptolepine analogs reported earlier
based on its favorable in vitro antimalarial and cytotoxic properties
reported in that earlier work (Lavrado et al. 2008). In the present
work, cryptolepine analog 2b exhibited an IC50 value against
murine macrophages of 34 �M thus making it the second most
cytotoxic compound after 2a triflate. Relatively high cytotoxicity
against murine macrophages lead to 2a triflate and 2b exhibiting
the lowest SI values.

The indole alkaloids 1–3 were evaluated in vivo in P. berghei-
infected mice in the 4-day suppressive test and the result is
presented in Table 2. Ellipticine (1) was highly active at an oral dose
of 50 mg/kg/day (100% inhibition versus controls on days 5 and 7).
At this same dose, the mean survival time (MST) of the animals was
>40 days (limit of the observation period and identical to the MST
of the control substance chloroquine). Also, 1 had good oral activ-
ity on day 5 and good activity via subcutaneous injection on day 7
at 10 mg/kg/day (77 and 70% inhibition, respectively; MST  = 27–29
days) and moderate oral activity at 1 mg/kg/day (61–67% inhibition,
MST  = 22–23 days). 3 exhibited high oral activity at ≥50 mg/kg/day
(90–97% inhibition, MST  = 23–27 days) and low to moderate oral
and subcutaneous activity at 1 and 10 mg/kg/day (7–64% inhibition,
MST  = 24–27 days). Cryptolepine triflate (2a triflate) exhibited only
moderate oral and subcutaneous activity at 50 mg/kg/day (43–63%
inhibition, MST  = 24–25 days). At a dose of 50 mg/kg/day, subcuta-
neously injected cryptolepine derivative 2b was lethal to infected
mice (MST = 3 days) and oral activity at this dose was moderate
(45–55% inhibition, MST  = 25 days). At 10 mg/kg/day, 2b adminis-
tered orally and subcutaneously exhibited low to moderate activity
(25–60% inhibition, MST  = 24 days).

Discussion

Indole alkaloids 1–3 were active against chloroquine-resistant
K1 and chloroquine-sensitive 3D7 strains of P. falciparum.  Thus, 1–3
do not exhibit cross-resistance to chloroquine, though, as discussed
below, like chloroquine, they inhibit hemozoin formation.

The in vitro activity of 1 against P. falciparum was described for
the first time by Andrade-Neto (2007) (IC50 = 73 nM,  K1 strain) and
was recently independently confirmed against the chloroquine-
resistant FcM29-Cameroon strain of P. falciparum (IC50 = 1.13 �M)
(Passemar et al. 2011; see also Pohlit et al. 2012). Presented herein

are the first data on the antimalarial activity of olivacine (3) which
exhibited important in vitro antimalarial activity and low cytotox-
icity.

During intraerythrocytic infection, P. falciparum parasites
crystallize toxic heme released during hemoglobin catabolism
resulting in hemozoin formation. In mechanistic studies, 1 (ICG,
IC50 = 7.9 �M)  exhibited greater in vitro inhibition of hemozoin
crystal growth (ICG) than quinine (ICG, IC50 = 17.1 �M).  ICG by 1
may  occur by surface binding or a substrate sequestration mecha-
nism (Chong and Sullivan 2003).

Alternatively, 1 may  inhibit Plasmodium spp. by interaction with
DNA. Highly planar, 1 intercalates DNA bases in vitro with high
affinity. Also, 1 strongly inhibits DNA topoisomerase II in vitro
(Moody et al. 2007). Recently, formation of covalent DNA adducts
mediated by ellipticine oxidation with cytochrome P450 and per-
oxidases was  proposed as a mode of action (Kotrbova et al. 2011).

Cryptolepine triflate (2a triflate) exhibited IC50 values of 0.80
and 0.91 �M against the K1 and 3D7 strains of P. falciparum,  respec-
tively, in agreement with earlier reports for 2a against K1 (Cimanga
et al. 1997; Wright et al. 2001) and 3D7 strains (Lavrado et al.
2011). Herein, 2a triflate was  the most toxic compound to murine
macrophages (IC50 = 9.4 �M)  and its selectivity indices (SI) were the
lowest of all compounds studied (SI = 10–12).

Lavrado et al. (2008) synthesized analogs of 2a containing
diamino-alkane side chains at C-11. The basis for this approach was
the observation that a basic amino side chain is a requirement for
chloroquine accumulation in the acidic digestive vacuole of the par-
asite. These analogs of 2a were potent inhibitors (IC50 = 20–455 nM)
of P. falciparum strains having different drug resistance pheno-
types (Lavrado et al. 2008, 2011). Herein, the rationally designed
11-(4-piperidinamino)cryptolepine 2b which has optimal in vitro
antimalarial and SI (Lavrado et al. 2008) was the most active com-
pound against P. falciparum in vitro.

Cryptolepine analog 2b was less toxic (IC50 = 34 �M) to
macrophages than 2a and exhibited good SI. Similarly, 2a tri-
flate and 2b exhibited low toxicity to HUVEC cells (IC50 = 1.18
and 2.04 �M,  respectively) (Lavrado et al. 2008, 2011). In previ-
ous work, 2a exhibited high cytotoxic, genotoxic, DNA intercalating
and topoisomerase II inhibitory properties (Bonjean et al. 1998). 2a
iodide, its derivatives and analogs (e.g. 2,7-dibromocryptolepine)
cause DNA damage in lymphocytes, but do not affect human sperm.
Due to in vitro DNA damage by 2a,  2,7-dibromocryptolepine and
related compounds, these substances may  not be suitable for pre-
clinical development as antimalarials (Gopalan et al. 2011).

Ellipticine (1), olivacine (3) and related ellipticine-like com-
pounds have received attention due to their high toxicity to tumor
cells and low number of side effects. Thus, derivatives of these com-
pounds are excellent target compounds for clinical studies (Sizum
et al. 1988; Jasztold-Howorko et al. 2004). In tumor cells, there is
evidence that the mechanism of action involves DNA intercalation
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Table  2
In vivo suppression of Plasmodium berghei in infected mice and average mouse survival time after oral and subcutaneous treatments with compounds 1–3.

Dose (mg/kg/day) % Parasite inhibition Average survival time ± SD (day)

Oral Subcutaneous Oral Subcutaneous

Day 5 Day 7 Day 5 Day 7

Ellipticine (1)
50 100 100 NT NT >40 NT
10 77 42 33 70 27 ± 2 29 ± 3
1 67 61 0 44 22 ± 4 23 ± 5

Cryptolepine (2a)
50 43 50 63 61 24 ± 5 25 ± 4
10  38 28 21 46 18 ± 3 21 ± 3
1  3 5 16 31 17 ± 3 22 ± 2

Cryptolepine analog (2b)
50 55 44 D D 25 ± 4 3 ± 1
10 47  25 60 30 24 ± 4 24 ± 4

Olivacine (3)
100 97 90 14 55 26 ± 6 27 ± 2
50  91 90 NT NT 23 ± 2 NT
10  48 64 40 44 27 ± 2 26 ± 2
1  25 42 7 45 24 ± 3 25 ± 1

Chloroquine
10  99 98 98 99 >40 >40
Control 0 0 0 0 20 ± 5 22 ± 3

SD: standard deviation; NT: not tested; –: not calculable.

and interference with the activity of topoisomerase II with conse-
quent cytotoxic effects which are related to size, shape and flatness
of 1 and 3 (Carvalho and Laks 2001; Braga et al. 2004). Impor-
tantly, we observed low cytotoxicity for 1 and 3 against mouse
macrophages whereas 2a triflate and cryptolepine derivative 2b
exhibited relatively high toxicity to macrophages.

As seen above, compounds 1–3 inhibit P. falciparum in vitro. Only
cryptolepine has been studied previously using in vivo antimalar-
ial models. So, the effects of 1–3 in P. berghei-infected mice were
explored. Ellipticine (1) was the most active compound in vivo sup-
pressing parasitemia by 100% and providing MST  of >40 days at an
oral dose of 50 mg/kg/day. Remarkably, this was  the same result
obtained for control compound chloroquine at 10 mg/kg/day for all
animals. Also, up to 77% inhibition of parasitemia was  observed
for 1 at doses of 10 mg/kg/day. Few compounds (e.g. chloroquine)
significantly reduce parasitemia in mice infected with P. berghei.
At the highest dose of 1 (50 mg/kg/day), no mortality or other
signs of intoxication were observed. The in vivo antimalarial activ-
ity of 3 was lower than that of its structural isomer 1. No toxic
effects were observed in mice which were administered 3 at up to
100 mg/kg/day.

The in vivo antimalarial activity of 2a triflate was low to moder-
ate. Thus, 2a triflate administered subcutaneously (50 mg/kg/day)
inhibited P. berghei by 63% (day 5). Similarly, Kirby et al.
(1995) observed that parasitemia in P. berghei-infected mice
was not reduced by subcutaneously administered cryptolepine
(113 mg/kg/day).

Cryptolepine iodide (2a iodide) was toxic to P. berghei-infected
mice by intraperitoneal injection at 12.5 mg/kg/day (Wright et al.
2001). Toxicity is related to the intraperitoneal route of admin-
istration. However, no deaths were reported when 2a iodide
was administered subcutaneously (at 113 mg/kg/day) or orally
(50 mg/kg/day) (Wright et al. 2001). Herein, 2a triflate exhibited
no toxic effects.

Cryptolepine analog 2b exhibited moderate activity in vivo and
acute toxicity. Orally at 50 mg/kg/day, 2b inhibited the growth of P.
berghei by 55%. However, subcutaneously at 50 mg/kg/day, 2b killed
all mice after the second dose. Subcutaneously, at 10 mg/kg/day, 2b
caused ulceration at the place of injection and inhibited P. berghei
only moderately (60%).

Cryptolepine triflate (2a triflate) and derivatives (e.g. 2,7-
dibromocryptolepine and 2b)  exhibit limited efficacy in P.
berghei-infected mice. Also, cytotoxicity, acute toxicity and geno-
toxicity are potential drawbacks to their use as drugs. Importantly,
structural isomers 1 and 3 exhibited good in vitro SI and 1 provided
P. berghei-infected mice with mean survival times greater than 40
days. These data reveal the potential of ellipticine (1) and olivacine
(3) as antimalarial leads.
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